Fusing your Applications with the Windows Explorer

(1997 by John Lam

Introduction

Have you ever wanted to run your application in the right-hand pane of Explorer? Does this user interface metaphor make sense for your application? If so, then this paper is definitely for you!

Before we continue, a few pre-requisites are in order. You must have at least a working understanding of COM before you’ll be able to benefit from the materials included in this paper. COM is Microsoft’s binary standard for object programming. In essence, it defines a set of contracts that define how your objects must communicate at a binary level. Since COM is a binary standard, any programming language that can support this standard can be used to create COM objects. Delphi is one of these programming languages.

I’ve included a few references to get you up and running in a hurry. Unfortunately, the lingua franca of COM is C++, so most of the documentation that you’ll see in the press and the Windows SDK is written for the C++ programmer. To try and ease some of the pain, I’ve also included the URL’s of the PC Magazine articles that I’ve written about COM from the perspective of a Delphi programmer.

· Dale Rogerson, Inside COM, Microsoft Press 1997. A very good introduction to COM.

· David Chappell, Understanding ActiveX and OLE, Microsoft Press 1996. A very good high-level overview of the various ActiveX, OLE and COM technologies.

· John Lam, Dual Interfaces Using Delphi: Combine IDispatch's flexibility with high-performance COM http://www.pcmag.com/issues/1519/pcmg0023.htm
· John Lam, OLE Structured Storage: A View from Delphi http://www.pcmag.com/issues/1422/pcm00138.htm

Folders and Views: The basic architecture of Explorer

Explorer presents a view of information in two panes. This two-pane view expresses the user interface idiom of an object and its contents.

The left pane shows the user what the object’s position is within the shell’s namespace. Explorer uses a Win32 Tree View control to show an object’s position relative to all other objects in the shell. A user can glance at the left pane and immediately see which object the currently selected object is a child of, and what objects the currently selected object contains. This allows a user to quickly get their bearings within the shell’s namespace.

Traditionally, we have thought of the left pane as being a directory tree, and to a certain extent this is exactly what is shown. However, the left pane also exposes many objects that are not directories; such as the Control Panel and the Printers folder. Therefore, keep in mind that you can use the left pane to show the position of any object‑not just traditional file system directories.

The right pane shows the user what the details are regarding the currently selected item in the left pane. When browsing into a directory, the right hand pane shows the contents of that directory. When browsing into a non-directory object such as Control Panel, the right hand pane shows the objects that are contained within the control panel.

To simplify the discussion that follows, let’s refer to these two panes as folders and views. Folders can contain other objects, and views show us the contents of those folders.

How folders interact with Explorer

There are several different types of folder objects that can be browsed by Explorer. There are traditional folder objects that represent directories on your hard drive, and virtual folders such as the Control Panel and your Network Neighborhood.

Traditional folder objects are implemented by the shell itself, and represent physical directories on your hard drive. Unfortunately, since the Windows shell does not provide a default implementation, you cannot override its implementation.

The so-called virtual folders are implemented by shell extension COM objects, and represent items such as your control panel applets and the printers attached to your PC. Until recently, however, the COM interfaces that make these virtual folders possible have been largely under-documented.

These virtual folders are more correctly called namespace extensions. You can create namespace extensions by building custom shell extension COM objects. Your shell extension object must be packaged in a DLL and must implement at a minimum the IUnknown and IShellExtInit interfaces.

The two main components of a namespace extension object are the folder object and the view object. These COM objects must implement respectively the IShellFolder and IShellView interfaces. Therefore, your folder object implements IUnknown, IShellExtInit and IShellFolder (IPersistFolder as well, but we will see this later), and your view object implements IUnknown, IShellExtInit and IShellView.

Item Identifiers

We will first examine how a folder object interacts with the Windows shell. Remember that the left pane of Explorer represents an object’s location within the shell’s namespace. Therefore, that object must be able to unambiguously describe its location within the shell’s namespace. The most important concept to learn here is that of the Item Identifier.

Also remember that the objects in the left pane of Explorer do not necessarily represent directories. There are also non-directory objects such as the Control Panel, the Network Neighborhood and the Printers folder present in the left pane. Thus, we cannot use directory paths to unambiguously describe the location of a folder object that isn’t a directory.

Let’s take a look at the following imaginary directory path:

C:\Program Files\Naleco\Interesting Stuff\Object.DLL
Each component of the path uniquely describes the branches that must be taken within the namespace to find Object.DLL. While this mechanism works well for directories, which can be described in plain text, it breaks down for other classes of objects that may not be identified quite as easily.

Rather than force you to convert everything into a text format, Microsoft allows you to define your own format for the individual components of a path. These components are known as Item Identifiers, and have the following structure:

 PSHItemID = ^TSHItemID;

 TSHItemID = packed record { mkid }

 cb: Word; { Size of the ID (including cb itself) }

 abID: array[0..0] of Byte; { The item ID (variable length) }

 end;

Notice how there isn’t any definition at all for abID? This allows you to stuff whatever binary data you might feel is appropriate to identify the next branch in the unique path to your object.

Item Identifiers are rarely found in isolation. They are typically passed around in data structures known as Item Identifier Lists. An Item Identifier List contains a set of Item Identifiers packed end to end. A 0 in the cb parameter of the final item flags the end of the list. As you would expect, these Item Identifier Lists are used to construct the fully qualified path to a particular object within a namespace.

A folder object does not need to keep track of where it exists within the shell’s namespace. Before an object can be constructed, the shell must know where to find it. After creating the folder object, the shell will inform it of its position within the namespace by calling its IPersistFolder interface and passing it an Item Identifier List.

Types of Namespaces

There are two types of namespaces. The namespace that the shell maintains and presents to users will be called the Standard Namespace. Any namespace that you (or anyone else for that matter) create will be called a Custom Namespace.

The most important thing to remember about namespaces is that only the top-level object of your Custom Namespace will automatically appear within the Standard Namespace. You can make your top-level object appear in the Standard Namespace by one of two methods:

1) Creating a directory within the standard namespace and appending the CLSID (a Class IDentifier that is used to uniquely identify your folder object) of the folder object as the filename extension of the folder object: e.g. Custom Namespace.{12345678-0000-0000-0000-C00000000000}.

2) Creating an entry in your Registry in the following key: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Explorer\Desktop\Namespace.

Your namespace extension bears the responsibility for knowing about all of the objects that exist within its custom namespace. Each of your namespace objects must know about its properties, as well as knowing how to obtain the properties of all of its child objects. Explorer will call on your namespace extension’s folder object to enumerate its children for display when the user browses into your custom namespace (by double clicking on your custom namespace object’s root folder for example).

How folders interact with their children

Once you have added the root of your custom namespace to Explorer, the user controls what portions of your namespace are visible in the left and / or right hand panes of Explorer. By expanding an existing folder in the left pane, or clicking on a particular folder in the left pane to inspect its contents in the right pane, Explorer presents the user with a universal interface to the shell’s namespace.

When a user clicks on the “+” symbol next to a folder object or double clicks on the folder object itself, Explorer’s standard behavior is to show a list of all of the folders that are children of the selected folder. This is implemented by a call to a folder object’s IShellFolder::EnumObjects function.

When a user clicks on a particular folder, Explorer presents the user with a view of the contents of that folder object. Two things must first be done before the view can be displayed:

1) Create the folder object. Explorer must first create the parent of the folder object that is being selected, and call that object’s IShellFolder::BindToObject member function.

2) Create the view object. Once Explorer has created the selected folder object, it calls that object’s IShellFolder::CreateViewObject member function.

How folders interact with views

When a user clicks on a folder, Explorer must create the view object for that folder. This is done through a call to the folder object’s IShellFolder::CreateViewObject member function. Once a view object has been created, we must determine what kind of view object to create.

There are two types of views in Explorer. The first is a popup view window that contains a view of the items inside the folder. This is the view that the user sees when they double-click on a folder item that is already in a pop-up window (i.e. not in Explorer itself). The user can also force Explorer to show this view by right clicking on a folder in the left pane of Explorer and selecting Open from the popup menu.

The second view type is generated through an Explore action. When a user double clicks on a folder in the left pane of Explorer, the contents of that folder are usually displayed by default in the right pane. The user can also Explore into a folder by right clicking on a folder object and selecting Explore from the popup menu.

The folder object creates either one of these objects by calling the IShellView::CreateViewWindow member function of the view object. It is the view object’s responsibility in the implementation of CreateViewWindow to determine which view mode is being requested. We will see this code later when we look at our implementation of IShellView.

A final key point about views and folders is that there can be many view objects for a single folder object. You can open up as many folder views or Explorer browsers as you like; each of which can be looking at the same view. Therefore, your view object and folder objects must be implemented as separate COM objects. The Windows shell takes care of the details involved in synchronizing the contents of all of the different views.

Creating a Namespace Extension using Delphi 3.0

Delphi 3.0 contains a number of features that make it extremely easy to create COM objects:

1) Native support for COM objects

2) Native support for COM interfaces

3) Project support for multiple COM objects within a single DLL.

4) A translation of the Win32 SDK header files required for implementing namespace extensions.

Delphi 2.0 already had support for #4, but it is the first three features that make Delphi 3.0 really shine for developing COM objects.

Delphi 3.0 introduces native support for COM objects through the TComObject base class. TComObject implements the ubiquitous IUnknown interface for you, and hides all of the messy reference counting details from you. Delphi 3.0 also adds class factory support for your object through the addition of a single line in the initialization section of your COM object’s unit:

TComObjectFactory.Create(ComServer, TShellViewImpl, CLSID_ShellViewDemo, ‘’, ‘Delphi 3.0 Sample Shell Extension View Object’, ciMultiInstance);

You no longer have to worry about all of the mundane details in getting your COM object up and running. This is COM programming the way it was meant to be.

The new native support for COM interfaces makes it extremely easy to add multiple interfaces to a single COM object. In Delphi 2.0, this used to be done through containment. You would have to create separate sub-objects each of which implemented a single COM interface, and expose them through your implementation of QueryInterface. These sub-objects would either implement the functionality (which is generally undesirable), or delegate the actual functionality to its parent object. Either way, you had to write lots of little one-line functions to implement support for multiple COM interfaces.

In Delphi 3.0, all you have to do is add each COM interface to your class keyword:

TShellViewImpl = class(TComObject, IShellView, IOleWindow)

The first parameter in the class parameter list is the object that you are deriving from. The rest of the parameters are used to specify the COM interfaces that your object supports. TComObject automatically implements IUnknown for you, so you don’t need to include it in your list of interfaces.

You would prototype the IShellView interface’s member functions much in the same way that you did in Delphi 2.0, but ignoring the need for the virtual or override declarations:

function TranslateAccelerator(var Msg: TMsg): HResult; stdcall;

function EnableModeless(Enable: Boolean): HResult; stdcall;

…

Delphi 3.0’s implementation of QueryInterface in TComObject takes care of mapping the incoming interface calls to the correct function for you! If you stop to think about it, this method of automatic delegation is similar to the mechanism that Delphi uses to automatically dispatch Windows messages to the correct event handler in your forms. Delphi makes building COM objects no more difficult than building form based Delphi applications! That’s a tremendous improvement.

Finally, Delphi also adds support for adding multiple COM objects to a single DLL. By selecting the ActiveX Library project option from the ActiveX page of the Object Repository, you have a general-purpose container that can contain any number of COM objects and their associated class factories. Delphi handles all of the details of implementing the DllGetClassObject COM entry point for you, and delegating the object creation request to the appropriate class factory.

In this paper, I’m presenting a general framework for building applications that can run in the right pane of Explorer. There are several units included in the sample code:

ShellFolder.pas:
Implementation of the folder object that appears in the left pane of Explorer.

ShellView.pas:
Implementation of the view object that creates the window that appears in the right pane of Explorer.

ViewForm.pas:
Implementation of the Delphi form that will appear in the right pane of Explorer.

The first two units implement the general framework required for building a simple namespace extension. The final unit is a generic Delphi form that you can populate with whatever controls that you wish. The only limitation is that you cannot place ActiveX controls on that form; Delphi VCL components, however, are just fine.

The key function in the ShellFolder.pas unit is CreateViewObject. This function creates a new instance of the view object and returns the interface (always IShellView) requested by Explorer. The code that does this is:

// Ask ComClassManager for the correct class factory

Factory := ComClassManager.GetFactoryFromClassID(CLSID_RADFindView);

if Factory <> nil then
begin

 FObject := Factory.CreateComObject(nil);

 if FObject <> nil then
 begin

 // Now QI for the interface requested

 FObject.ObjAddRef;

 Result := FObject.ObjQueryInterface(riid, ppvOut);

 FObject.ObjRelease;

 end;

The function prototype for CreateViewObject is:

function TShellFolderImpl.CreateViewObject(hwndOwner: HWND; const riid: TIID;

 out ppvOut: Pointer): HResult;

I felt it was important to point out a new keyword in Delphi 3.0: the out parameter. This is a new keyword that forces the compiler to generate some additional code prior to calling the CreateViewObject function. Some sample code will help illustrate the point:

var

 malloc: IMalloc;

begin

 GetAnotherMallocOut(malloc);

 GetAnotherMallocVar(malloc);

end;

If we examine the above function calls using Turbo Debugger, we see that the compiler has generated the following code:

GetAnotherMallocOut(malloc);

lea
eax,[ebp-04]

call
@IntfClear

mov
edx,eax

mov
eax,ebx

call
TForm1.GetAnotherMallocOut

GetAnotherMallocVar(malloc);

lea
edx,[ebp-04]

mov
eax,ebx

call
TForm1.GetAnotherMallocVar

The first function call is to GetAnotherMallocOut which is prototyped as:

procedure GetAnotherMallocOut(out malloc: IMalloc);

The second function call is to GetAnotherMallocVar which is prototyped as:

procedure GetAnotherMallocVar(var malloc: IMalloc);

As you can see, the only difference between the two functions is that the former uses the out parameter syntax. Examining the dissasembly listing above, you can see that the compiler generates an additional call to a function called IntfClear (which is declared in the System unit), which checks to see if the variable being passed is already assigned to a COM interface (non-nil). If so, it calls Release on that interface before calling GetAnotherMallocOut. This helps to avoid dangling references caused by assigning an existing pointer to another COM interface before freeing the one it was pointing to first. This may seem like a small point, but it can greatly reduce the amount of bugs that are caused by not freeing COM objects after you’re done using them.

Finally, lets take a look at the code that actually creates the view window. This code is implemented in IShellView::CreateViewWindow function:

function TShellViewImpl.CreateViewWindow(PrevView: IShellView;

 var FolderSettings: TFolderSettings; ShellBrowser: IShellBrowser;

 var Rect: TRect; out Wnd: HWND): HResult; stdcall;

begin

 // Save the folder settings passed

 FFolderSettings := FolderSettings;

 FShellBrowser := ShellBrowser;

 // Get the window handle of Explorer's Parent Window

 FShellBrowser.GetWindow(FHWndParent);

 // Create our Form

 FForm := TView.Create(nil);

 Wnd := FForm.Handle;

 SetParent(Wnd, FHWndParent);

 with FForm do
 begin

 Top := Rect.Top;

 Left := Rect.Left;

 Width := Rect.Right - Rect.Left;

 Height := Rect.Bottom - Rect.Top;

 Show;

 end;

 if Wnd <> 0 then
 Result := NOERROR

 else

 Result := E_UNEXPECTED;

end;

We create a new instance of our form object and set the form as a child of the Explorer main window. This allows Explorer to painting and sizing our form window.

Wrapping things up.
This ends our whirlwind tour of Delphi 3.0’s new COM support and how we can leverage it to create truly useful Windows namespace extension objects. Please feel free to let me know about the applications that you have been able to integrate into Explorer. You can contact me at:

jlam@naleco.com
Good luck!

